

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 2429–2431

Platinum chloride/Xphos-catalyzed regioselective hydrosilylation of functionalized terminal arylalkynes

Abdallah Hamze, Olivier Provot, Jean-Daniel Brion, Mouâd Alami*

Univ Paris-Sud, CNRS, BioCIS, UMR 8076, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, rue J.B. Clément, Châtenay-Malabry F-92296, France

> Received 26 November 2007; revised 7 February 2008; accepted 11 February 2008 Available online 14 February 2008

Abstract

Totally regioselective hydrosilylation of functionalized terminal arylalkynes was achieved using PtCl2 associated with the air-stable and bulky Xphos ligand with various silanes. Regardless of the electronic nature of the substituents on the aromatic ring, a single β -(E)-vinylsilane was obtained in excellent yields.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: Hydrosilylation; Alkynes; Regioselectivity; Platinum; Phosphane ligands; Xphos

Functionalized β -(*E*)-styrylsilanes 2, which have emerged as powerful intermediates in organic synthesis,^{[1](#page-2-0)} can in principle be accessed by metal-catalyzed hydrosilyla-tion of terminal arylalkynes.^{[2](#page-2-0)} Although the platinum catalyzed hydrosilylation of alkynes is well documented, however, the reaction with functionalized terminal arylalkynes to provide β -(E)-styrylsilanes has received scant attention.[3](#page-2-0) Recently, significant progress with non-substituted phenylacetylene in terms of regioselectivity has been made for the β -(E)-styrylsilane formation^{[4](#page-2-0)} using the preformed $[Pt(CH₂=CHSiMe₂)₂O]$ in conjunction with airsensitive, pyrophoric, and difficult-to-handle $P(tBu)$ ₃. The remaining challenge is to obtain high β -(E)-selectivity from functionalized arylalkynes without compromising reagent stability and practicality. Herein, we report that $PtCl₂/$ Xphos provides an efficient catalyst system for the hydrosilylation of a wide variety of functionalized phenylacetylenes 1 with various silanes.

Previously, we reported that platinum oxide proved to be a versatile catalyst for the hydrosilylation of internal

E-mail address: mouad.alami@u-psud.fr (M. Alami).

0040-4039/\$ - see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.02.060

arylalkynes. 5 Unfortunately, in the case of terminal alkynes, the regioselectivity of the H–Si bond addition was found to be weak.^{[6](#page-2-0)} Therefore, we anticipated that the tuning of platinum complex catalysts would affect the regioselectivity of H–Si bond addition. The hydrosilylation regioselectivity of 1a with HSiEt₃ was studied under several reaction conditions (platinum catalysts, ligands, and solvents) according to Scheme 1. The best results in term of yield and selectivity were achieved when commercially available PtCl₂ (5 mol %) and Xphos ligand (10 mol %) were used in THF. Accordingly, 2a was exclusively formed

Scheme 1.

Corresponding author. Tel.: +33 01 46 83 58 87; fax: +33 01 46 83 58 28

 $^{\rm a}$ Determined by $^{\rm 1}$ H NMR and GC.

 $\frac{b}{c}$ All of the reported compounds exhibited spectral data in agreement with the assigned structures.

Isolated yield.

^d A 18:82 α : β mixture was obtained in the absence of Xphos ligand.

^e Reaction was performed at room temperature.

f Isolated yield of the vinylsilane α : β mixture after column chromatography.

and the analysis of the crude reaction mixture by ${}^{1}H$ NMR spectroscopy and GC revealed no trace of either 3a or the β -(Z)-vinylsilane demonstrating that the H–Si bond addition proceeded exclusively in a syn fashion. To the best of our knowledge, this is the first example of terminal

arylalkyne hydrosilylation being catalyzed by $PtCl₂$ catalyst associated with stable and commercially available monodentate Xphos ligand.

Next, we used the PtCl₂/Xphos catalyst system for evaluating the scope of this hydrosilylation with a range of

functionalized terminal alkynes [\(Table 1](#page-1-0)). para-Substituted arylalkynes $1b$ –f were cleanly hydrosilylated with Et_3SiH in the presence of the $PtCl₂/Xphos$ couple to their corresponding β -(*E*)-adducts with excellent yields whatever is the nature (electron donating or electron withdrawing group) of the substituent (entries 2–6). Replacement of Et₃SiH by (EtO)₃SiH resulted in similar yields and β -(E)selectivities (entries 7 and 8) except in the case of arylalkyne 1d with a para electron withdrawing group (entry 9). Fortunately, we were pleased to observe that the replacement of (EtO) ₃SiH by HSiMe₂OEt led to β - (E) vinylsilane 2*j* with an excellent regioselectivity (entry 10).

With the *ortho*-substituted alkyne $1g$, again a total β regiocontrol was observed with either Et_3SiH or $(EtO)_3SiH$ (entries 11 and 12). This result clearly demonstrated that the regioselectivity of the H–Si bond addition is governed by steric effects induced by Xphos ligand rather than ortho-directing effect (ODE) as we previously reported.^{5,6,8} To support this explanation, the hydrosilylation of ortho methoxyphenylacetylene was conducted without Xphos and produced a $38:62$ ratio of α : β regioisomers. With $ortho$ -methoxycarbonyl phenylacetylene **1h**, the PtCl₂catalyzed hydrosilylation was less selective and led to a regioisomeric mixture with a preference for the β -isomer $(\alpha;\beta = 19:81$, entry 13) indicating that ODE,⁵ which is opposed to steric effects, rebalances the isomeric distribution, thus increasing the amounts of α -adduct.

In conclusion, we have established that $PtCl₂/Xphos$ is an efficient catalyst system for the hydrosilylation of functionalized terminal alkynes with various silanes. This quite simple procedure is characterized by functional group compatibility and a good generality. Additionally, our results demonstrated that commercially available and air-stable X phos ligand associated to the PtCl₂ catalyst constitutes an attractive catalytic system for the univocal synthesis of β -(E)-vinylsilanes from terminal arylalkynes and should find many applications in organic synthesis.

Acknowledgment

The CNRS is gratefully acknowledged for financial support of this research.

References and notes

1. (a) Wang, H. W.; Cheng, Y. J.; Chen, C. H.; Lim, T. S.; Fann, W.; Lin, C. L.; Chang, Y. P.; Lin, K. C.; Luh, T. Y. Macromolecules 2007, 40, 2666–2671; (b) Nicolaou, K. C.; Nold, A. L.; Milbum, R. R.; Schindler, C. S.; Cole, K. P.; Yamaguchi, J. J. Am. Chem. Soc. 2007, 129, 1760–1768; (c) Barbero, A.; Blanco, Y.; García, C.; Pulido, F. J. Synthesis 2000, 1223–1228; (d) Lo, M. Y.; Sellinger, A. Synlett 2006, 3009–3012; (e) Denmark, S. E.; Baird, J. D. Chem. Eur. J. 2006, 12, 4954–4963; (f) Katayama, H.; Nagao, M.; Nishimura, T.; Matsui, Y.; Umeda, K.; Tsuruoka, T.; Nawafune, H.; Ozawa, F. J. Am. Chem. Soc. 2005, 127, 4350-4353.

- 2. For a review, see: (a) Trost, B. M.; Ball, Z. T. Synthesis 2005, 853–887; (b) De Bo, G.; Berthon-Gelloz, G.; Tenant, B.; Markó, I. Organometallics 2006, 25, 1881–1890; (c) Chauhan, M.; Hauck, B.; Keller, L.; Boudjouk, P. J. Organomet. Chem. 2002, 645, 1–13; (d) Wu, W.; Li, C. J. Chem. Commun. 2003, 1668–1669; (e) Wang, F.; Neckers, D. C. J. Organomet. Chem. 2003, 665, 1-6; (f) Poyatos, M.; Maisse-François, A.; Bellemin-Laponnaz, S.; Gade, L. H. Organometallics 2006, 25, 2634–2641; (g) Na, Y.; Chang, S. Org. Lett. 2000, 2, 1887–1889; (h) Trost, B.; Ball, Z. J. Am. Chem. Soc. 2001, 123, 12726–12727; (i) Faller, J.; D'Alliessi, D. Organometallics 2002, 21, 1743–1746.
- 3. For recent Rh-catalysis, see: (a) Takeuchi, R.; Nitta, S.; Watanabe, D. J. Org. Chem. 1995, 60, 3045–3051; (b) Sato, A.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 2217–2220; (c) Zeng, J. Y.; Hsieh, M. H.; Lee, H. M. J. Organomet. Chem. 2005, 690, 5662-5671; (d) Mori, A.; Takahisa, E.; Yamamura, Y.; Kato, T.; Mudalige, A. P.; Kajiro, H.; Hirabayashi, K.; Nishihara, Y.; Hiyama, T. Organometallics 2004, 23, 1755–1765; For recent Ir-catalysis, see: (e) Miyake, Y.; Isomura, E.; Iyoda, M. Chem. Lett. 2006, 35, 836–837. For recent Co-catalysis, see: (f) Tojo, S.; Isobe, M. Tetrahedron Lett. 2005, 46, 381–384.
- 4. (a) Denmark, S. E.; Wang, Z. Org. Lett. 2001, 3, 1073–1076; (b) Itami, K.; Mitsudo, K.; Nishino, A.; Yoshida, J.-I. J. Org. Chem. 2002, 67, 2645–2652; (c) Aneetha, H.; Wu, W.; Verkade, J. G. Organometallics 2005, 24, 2590–2596.
- 5. Hamze, A.; Provot, O.; Alami, M.; Brion, J.-D. Org. Lett. 2005, 7, 5625–5628.
- 6. Hamze, A.; Provot, O.; Brion, J.-D.; Alami, M. Synthesis 2007, 2025– 2036.
- 7. Typical procedure: Under nitrogen atmosphere, PtCl₂ (0.05 mmol) and Xphos (0.1 mmol) in THF (0.5 mL) were heated at 60 $^{\circ}$ C for 15 min. Then, terminal alkyne (1 mmol) and triethylsilane or triethoxysilane (1.5 mmol) were successively added via a syringe, and the mixture was stirred at 60° C for 1 h. After evaporation of the solvent, the residue was purified by column chromatography to yield β -(E)-vinylsilane 2. Vinylsilane 2a: Yield: colorless oil, 91%. TLC: R_f 0.5 (Et₂O/cyclohexane, $5/95$, $SiO₂$). IR (neat, cm⁻¹): 2952, 2909, 2874, 2835, 1606, 1570, 1508, 1463, 1441, 1416, 1378, 1332, 1303, 1294, 1250, 1171, 1106, 1037, 1014, 986, 843, 789, 749, 717. ¹H NMR (300 MHz, CDCl₃): δ 0.57 (q, 6H, $J = 7.8$ Hz), 0.90 (t, 9H, $J = 7.8$ Hz), 3.72 (s, 3H), 6.17 (d, 1H, $J = 19.3$ Hz), 6.70–6.82 (m, 3H), 7.30 (d, 2H, $J = 8.7$ Hz). ¹³C NMR (75 MHz, CDCl₃): δ 3.7 (3CH₂), 7.6 (3CH₃), 55.4 (OCH₃), 114.0 (2CH), 123.1 (CH), 127.6 (2CH), 131.7 (C), 144.3 (CH), 159.6 (C). MS (ESI): 248 (M⁺). Anal. Calcd for C₁₅H₂₄OSi (248.44): C, 72.52; H, 9.74. Found: C, 72.48; H, 9.82.

Vinylsiloxane 2g: Yield: yellow oil, 65% ; ratio α : β (2/98 of isomers). TLC: R_f 0.50 (Et₂O/cyclohexane, 30/70, SiO₂). IR (neat, cm⁻¹): 3288, 2974, 2891, 2883, 1606, 1572, 1508, 1465, 1442, 1418, 1390, 1293, 1250, 1169, 1099, 1071, 1032, 994, 956, 832, 797, 776, 748, 709, 685, 640. ¹H NMR (300 MHz, CDCl₃): δ 1.20 (t, 9H, $J = 7.0$ Hz), 3.72 (s, 3H), 3.80 $(q, 6H, J = 7.0 \text{ Hz})$, 5.92 (d, 1H, $J = 19.5 \text{ Hz}$), 6.80 (d, 2H, $J = 8.3 \text{ Hz}$), 7.08 (d, 1H, $J = 19.5$ Hz), 7.34 (d, 2H, $J = 8.3$ Hz). ¹³C NMR (75 MHz, CDCl3): d 18.3 (3CH3), 55.3 (3CH2), 58.7 (OCH3), 113.9 (2CH), 114.7 (CH), 128.3 (2CH), 130.6 (C), 133.7 (CH), 160.3 (C). MS (ESI): 319 (M+Na)⁺. Anal. Calcd for C₁₅H₂₄O₄Si (219.40): C, 60.78; H, 8.16. Found: C, 60.65; H, 8.15.

8. (a) Liron, F.; Le Garrec, P.; Alami, M. Synlett 1999, 246–248; (b) Alami, M.; Liron, F.; Gervais, M.; Peyrat, J. F.; Brion, J. D. Angew. Chem., Int. Ed. 2002, 41, 1578–1580; (c) Liron, F.; Gervais, M.; Peyrat, J.-F.; Alami, M.; Brion, J.-D. Tetrahedron Lett. 2003, 44, 2789–2794. For the hydrostannation of enynes and related compounds see: (d) Alami, M.; Ferri, F. Synlett 1996, 755–756; (e) Ferri, F.; Alami, M. Tetrahedron Lett. 1996, 37, 7971–7974; (f) Bujard, M.; Ferri, F.; Alami, M. Tetrahedron Lett. 1998, 39, 4243–4246; (g) Hamze, A.; Provot, O.; Brion, J.-D.; Alami, M. J. Org. Chem. 2007, 72, 3868–3874.